]> git.parisson.com Git - timeside.git/commitdiff
prepare graph api and new core
authoryomguy <yomguy@parisson.com>
Wed, 17 Feb 2010 02:21:17 +0000 (02:21 +0000)
committeryomguy <yomguy@parisson.com>
Wed, 17 Feb 2010 02:21:17 +0000 (02:21 +0000)
graph/core.py [new file with mode: 0644]
graph/spectrogram_audiolab.py
graph/wav2png.py [deleted file]
graph/waveform_audiolab.py
tests/api/examples.py

diff --git a/graph/core.py b/graph/core.py
new file mode 100644 (file)
index 0000000..75976d8
--- /dev/null
@@ -0,0 +1,389 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# wav2png.py -- converts wave files to wave file and spectrogram images
+# Copyright (C) 2008 MUSIC TECHNOLOGY GROUP (MTG)
+#                    UNIVERSITAT POMPEU FABRA
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as
+# published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with this program.  If not, see <http://www.gnu.org/licenses/>.
+#
+# Authors:
+#   Bram de Jong <bram.dejong at domain.com where domain in gmail>
+#   Guillaume Pellerin <pellerin@parisson.com>
+
+
+import optparse, math, sys
+import ImageFilter, ImageChops, Image, ImageDraw, ImageColor
+import numpy
+import scikits.audiolab as audiolab
+import Queue
+
+
+color_schemes = {
+    'default': {
+        'waveform': [(50,0,200), (0,220,80), (255,224,0), (255,0,0)],
+        'spectrogram': [(0, 0, 0), (58/4,68/4,65/4), (80/2,100/2,153/2), (90,180,100),
+                      (224,224,44), (255,60,30), (255,255,255)]
+    },
+    'iso': {
+        'waveform': [(0,0,255), (0,255,255), (255,255,0), (255,0,0)],
+        'spectrogram': [(0, 0, 0), (58/4,68/4,65/4), (80/2,100/2,153/2), (90,180,100),
+                      (224,224,44), (255,60,30), (255,255,255)]
+    },
+    'purple': {
+        'waveform': [(173,173,173), (147,149,196), (77,80,138), (108,66,0)],
+        'spectrogram': [(0, 0, 0), (58/4,68/4,65/4), (80/2,100/2,153/2), (90,180,100),
+                      (224,224,44), (255,60,30), (255,255,255)]
+    }
+}
+
+
+class AudioProcessor(object):
+    def __init__(self, fft_size, channels, window_function=numpy.ones):
+        self.fft_size = fft_size
+        self.channels = channels
+        self.window = window_function(self.fft_size)
+        self.spectrum_range = None
+        self.lower = 100
+        self.higher = 22050
+        self.lower_log = math.log10(self.lower)
+        self.higher_log = math.log10(self.higher)
+        self.clip = lambda val, low, high: min(high, max(low, val))
+        self.q = Queue.Queue()
+
+    def put(self, samples, eod):
+        """ Put frames of the first channel in the queue"""
+       
+        # convert to mono by selecting left channel only
+        if self.channels > 1:
+            samples = samples[:,0]
+
+        if eod:
+            samples = numpy.concatenate((numpy.zeros(add_to_start), samples), axis=1)
+            
+            if add_to_end > 0:
+                samples = numpy.resize(samples, size)
+                samples[size - add_to_end:] = 0
+        
+        return samples
+
+
+    def spectral_centroid(self, samples, spec_range=120.0):
+        """ starting at seek_point read fft_size samples, and calculate the spectral centroid """
+        
+        samples *= self.window
+        fft = numpy.fft.fft(samples)
+        spectrum = numpy.abs(fft[:fft.shape[0] / 2 + 1]) / float(self.fft_size) # normalized abs(FFT) between 0 and 1
+        length = numpy.float64(spectrum.shape[0])
+        
+        # scale the db spectrum from [- spec_range db ... 0 db] > [0..1]
+        db_spectrum = ((20*(numpy.log10(spectrum + 1e-30))).clip(-spec_range, 0.0) + spec_range)/spec_range
+        
+        energy = spectrum.sum()
+        spectral_centroid = 0
+        
+        if energy > 1e-20:
+            # calculate the spectral centroid
+            
+            if not self.spectrum_range:
+                self.spectrum_range = numpy.arange(length)
+        
+            spectral_centroid = (spectrum * self.spectrum_range).sum() / (energy * (length - 1)) * self.samplerate * 0.5
+            
+            # clip > log10 > scale between 0 and 1
+            spectral_centroid = (math.log10(self.clip(spectral_centroid, self.lower, self.higher)) - self.lower_log) / (self.higher_log - self.lower_log)
+        
+        return (spectral_centroid, db_spectrum)
+
+
+    def peaks(self, start_seek, end_seek):
+        """ read all samples between start_seek and end_seek, then find the minimum and maximum peak
+        in that range. Returns that pair in the order they were found. So if min was found first,
+        it returns (min, max) else the other way around. """
+        
+        # larger blocksizes are faster but take more mem...
+        # Aha, Watson, a clue, a tradeof!
+        block_size = 4096
+    
+        max_index = -1
+        max_value = -1
+        min_index = -1
+        min_value = 1
+    
+        if end_seek > self.frames:
+            end_seek = self.frames
+    
+        if block_size > end_seek - start_seek:
+            block_size = end_seek - start_seek
+            
+        if block_size <= 1:
+            samples = self.read(start_seek, 1)
+            return samples[0], samples[0]
+        elif block_size == 2:
+            samples = self.read(start_seek, True)
+            return samples[0], samples[1]
+        
+        for i in range(start_seek, end_seek, block_size):
+            samples = self.read(i, block_size)
+    
+            local_max_index = numpy.argmax(samples)
+            local_max_value = samples[local_max_index]
+    
+            if local_max_value > max_value:
+                max_value = local_max_value
+                max_index = local_max_index
+    
+            local_min_index = numpy.argmin(samples)
+            local_min_value = samples[local_min_index]
+            
+            if local_min_value < min_value:
+                min_value = local_min_value
+                min_index = local_min_index
+
+        if min_index < max_index:
+            return (min_value, max_value)
+        else:
+            return (max_value, min_value)
+
+
+def interpolate_colors(colors, flat=False, num_colors=256):
+    """ given a list of colors, create a larger list of colors interpolating
+    the first one. If flatten is True a list of numers will be returned. If
+    False, a list of (r,g,b) tuples. num_colors is the number of colors wanted
+    in the final list """
+    
+    palette = []
+    
+    for i in range(num_colors):
+        index = (i * (len(colors) - 1))/(num_colors - 1.0)
+        index_int = int(index)
+        alpha = index - float(index_int)
+        
+        if alpha > 0:
+            r = (1.0 - alpha) * colors[index_int][0] + alpha * colors[index_int + 1][0]
+            g = (1.0 - alpha) * colors[index_int][1] + alpha * colors[index_int + 1][1]
+            b = (1.0 - alpha) * colors[index_int][2] + alpha * colors[index_int + 1][2]
+        else:
+            r = (1.0 - alpha) * colors[index_int][0]
+            g = (1.0 - alpha) * colors[index_int][1]
+            b = (1.0 - alpha) * colors[index_int][2]
+        
+        if flat:
+            palette.extend((int(r), int(g), int(b)))
+        else:
+            palette.append((int(r), int(g), int(b)))
+        
+    return palette
+    
+
+class WaveformImage(object):
+    
+    def __init__(self, image_width, image_height, nframes, bg_color=None, color_scheme=None, filename=None):
+        self.image_width = image_width
+        self.image_height = image_height
+        self.nframes = nframes
+        self.bg_color = bg_color
+        if not bg_color:
+            self.bg_color = (0,0,0)
+        self.color_scheme = color_scheme
+        if not color_scheme: 
+            self.color_scheme = 'default'
+        self.filename = filename
+        self.image = Image.new("RGB", (self.image_width, self.image_height), self.bg_color)
+        self.samples_per_pixel = self.nframes / float(self.image_width)
+        self.processor = AudioProcessor(self.fft_size, numpy.hanning)
+        self.draw = ImageDraw.Draw(self.image)
+        self.previous_x, self.previous_y = None, None
+        colors = color_schemes[self.color_scheme]['waveform']
+        # this line gets the old "screaming" colors back...
+        # colors = [self.color_from_value(value/29.0) for value in range(0,30)]
+        self.color_lookup = interpolate_colors(colors)
+        self.pixel = self.image.load()
+
+    def color_from_value(self, value):
+        """ given a value between 0 and 1, return an (r,g,b) tuple """
+        
+        return ImageColor.getrgb("hsl(%d,%d%%,%d%%)" % (int( (1.0 - value) * 360 ), 80, 50))
+        
+    def draw_peaks(self, x, peaks, spectral_centroid):
+        """ draw 2 peaks at x using the spectral_centroid for color """
+
+        y1 = self.image_height * 0.5 - peaks[0] * (self.image_height - 4) * 0.5
+        y2 = self.image_height * 0.5 - peaks[1] * (self.image_height - 4) * 0.5
+        
+        line_color = self.color_lookup[int(spectral_centroid*255.0)]
+        
+        if self.previous_y != None:
+            self.draw.line([self.previous_x, self.previous_y, x, y1, x, y2], line_color)
+        else:
+            self.draw.line([x, y1, x, y2], line_color)
+    
+        self.previous_x, self.previous_y = x, y2
+        
+        self.draw_anti_aliased_pixels(x, y1, y2, line_color)
+    
+    def draw_anti_aliased_pixels(self, x, y1, y2, color):
+        """ vertical anti-aliasing at y1 and y2 """
+
+        y_max = max(y1, y2)
+        y_max_int = int(y_max)
+        alpha = y_max - y_max_int
+        
+        if alpha > 0.0 and alpha < 1.0 and y_max_int + 1 < self.image_height:
+            current_pix = self.pixel[x, y_max_int + 1]
+            
+            r = int((1-alpha)*current_pix[0] + alpha*color[0])
+            g = int((1-alpha)*current_pix[1] + alpha*color[1])
+            b = int((1-alpha)*current_pix[2] + alpha*color[2])
+            
+            self.pixel[x, y_max_int + 1] = (r,g,b)
+            
+        y_min = min(y1, y2)
+        y_min_int = int(y_min)
+        alpha = 1.0 - (y_min - y_min_int)
+        
+        if alpha > 0.0 and alpha < 1.0 and y_min_int - 1 >= 0:
+            current_pix = self.pixel[x, y_min_int - 1]
+                
+            r = int((1-alpha)*current_pix[0] + alpha*color[0])
+            g = int((1-alpha)*current_pix[1] + alpha*color[1])
+            b = int((1-alpha)*current_pix[2] + alpha*color[2])
+            
+            self.pixel[x, y_min_int - 1] = (r,g,b)
+            
+    def process(self, frames):
+
+        #for x in range(self.image_width):        
+            seek_point = int(x * self.samples_per_pixel)
+            next_seek_point = int((x + 1) * self.samples_per_pixel)
+            (spectral_centroid, db_spectrum) = self.processor.spectral_centroid(seek_point)
+            peaks = self.processor.peaks(seek_point, next_seek_point)
+            self.draw_peaks(x, peaks, spectral_centroid)
+
+    def save(self):
+        a = 25
+        for x in range(self.image_width):
+            self.pixel[x, self.image_height/2] = tuple(map(lambda p: p+a, self.pixel[x, self.image_height/2]))
+        self.image.save(self.filename)
+
+        
+class SpectrogramImage(object):
+    def __init__(self, image_width, image_height, fft_size, bg_color = None, color_scheme = None):
+
+        #FIXME: bg_color is ignored
+
+        if not color_scheme: 
+            color_scheme = 'default'
+
+        self.image = Image.new("P", (image_height, image_width))
+        
+        self.image_width = image_width
+        self.image_height = image_height
+        self.fft_size = fft_size
+        
+        colors = color_schemes[color_scheme]['spectrogram']
+        
+        self.image.putpalette(interpolate_colors(colors, True))
+
+        # generate the lookup which translates y-coordinate to fft-bin
+        self.y_to_bin = []
+        f_min = 100.0
+        f_max = 22050.0
+        y_min = math.log10(f_min)
+        y_max = math.log10(f_max)
+        for y in range(self.image_height):
+            freq = math.pow(10.0, y_min + y / (image_height - 1.0) *(y_max - y_min))
+            bin = freq / 22050.0 * (self.fft_size/2 + 1)
+
+            if bin < self.fft_size/2:
+                alpha = bin - int(bin)
+                
+                self.y_to_bin.append((int(bin), alpha * 255))
+           
+        # this is a bit strange, but using image.load()[x,y] = ... is
+        # a lot slower than using image.putadata and then rotating the image
+        # so we store all the pixels in an array and then create the image when saving
+        self.pixels = []
+            
+    def draw_spectrum(self, x, spectrum):
+        for (index, alpha) in self.y_to_bin:
+            self.pixels.append( int( ((255.0-alpha) * spectrum[index] + alpha * spectrum[index + 1] )) )
+            
+        for y in range(len(self.y_to_bin), self.image_height):
+            self.pixels.append(0)
+
+    def save(self, filename):
+        self.image.putdata(self.pixels)
+        self.image.transpose(Image.ROTATE_90).save(filename)
+
+
+def create_spectrogram_png(input_filename, output_filename_s, image_width, image_height, fft_size,
+                           bg_color = None, color_scheme = None):
+    audio_file = audiolab.sndfile(input_filename, 'read')
+
+    samples_per_pixel = audio_file.get_nframes() / float(image_width)
+    processor = AudioProcessor(audio_file, fft_size, numpy.hanning)
+    
+    spectrogram = SpectrogramImage(image_width, image_height, fft_size, bg_color, color_scheme)
+    
+    for x in range(image_width):
+   
+        if x % (image_width/10) == 0:
+            sys.stdout.write('.')
+            sys.stdout.flush()
+            
+        seek_point = int(x * samples_per_pixel)
+        next_seek_point = int((x + 1) * samples_per_pixel)  
+        (spectral_centroid, db_spectrum) = processor.spectral_centroid(seek_point) 
+        spectrogram.draw_spectrum(x, db_spectrum)
+    
+    spectrogram.save(output_filename_s)
+    
+    print " done"
+
+
+
+class Noise(object):
+    """A class that mimics audiolab.sndfile but generates noise instead of reading
+    a wave file. Additionally it can be told to have a "broken" header and thus crashing
+    in the middle of the file. Also useful for testing ultra-short files of 20 samples."""
+    def __init__(self, num_frames, has_broken_header=False):
+        self.seekpoint = 0
+        self.num_frames = num_frames
+        self.has_broken_header = has_broken_header
+
+    def seek(self, seekpoint):
+        self.seekpoint = seekpoint
+
+    def get_nframes(self):
+        return self.num_frames
+
+    def get_samplerate(self):
+        return 44100
+
+    def get_channels(self):
+        return 1
+
+    def read_frames(self, frames_to_read):
+        if self.has_broken_header and self.seekpoint + frames_to_read > self.num_frames / 2:
+            raise IOError()
+
+        num_frames_left = self.num_frames - self.seekpoint
+        if num_frames_left < frames_to_read:
+            will_read = num_frames_left
+        else:
+            will_read = frames_to_read
+        self.seekpoint += will_read
+        return numpy.random.random(will_read)*2 - 1 
+
index 59c9c1dc44a1afbe920bdd1387ddf7c92fabb99e..6f25f302d1d930eb4d4076dc241c714745fb6648 100644 (file)
@@ -22,7 +22,7 @@
 from timeside.core import *
 from timeside.api import IGrapher
 from tempfile import NamedTemporaryFile
-from timeside.graph.wav2png import *
+from timeside.graph.core import *
 
 class SpectrogramGrapherAudiolab(Processor):
     """Spectrogram graph driver (python style thanks to wav2png.py and scikits.audiolab)"""
diff --git a/graph/wav2png.py b/graph/wav2png.py
deleted file mode 100644 (file)
index cd6b27e..0000000
+++ /dev/null
@@ -1,448 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# wav2png.py -- converts wave files to wave file and spectrogram images
-# Copyright (C) 2008 MUSIC TECHNOLOGY GROUP (MTG)
-#                    UNIVERSITAT POMPEU FABRA
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU Affero General Public License as
-# published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU Affero General Public License for more details.
-#
-# You should have received a copy of the GNU Affero General Public License
-# along with this program.  If not, see <http://www.gnu.org/licenses/>.
-#
-# Authors:
-#   Bram de Jong <bram.dejong at domain.com where domain in gmail>
-# Contributors:
-#   Guillaume Pellerin <pellerin@parisson.com>
-
-
-import optparse, math, sys
-import ImageFilter, ImageChops, Image, ImageDraw, ImageColor
-import numpy
-import scikits.audiolab as audiolab
-
-color_schemes = {
-    'default': {
-        'waveform': [(50,0,200), (0,220,80), (255,224,0), (255,0,0)],
-        'spectrogram': [(0, 0, 0), (58/4,68/4,65/4), (80/2,100/2,153/2), (90,180,100),
-                      (224,224,44), (255,60,30), (255,255,255)]
-    },
-    'iso': {
-        'waveform': [(0,0,255), (0,255,255), (255,255,0), (255,0,0)],
-        'spectrogram': [(0, 0, 0), (58/4,68/4,65/4), (80/2,100/2,153/2), (90,180,100),
-                      (224,224,44), (255,60,30), (255,255,255)]
-    },
-    'purple': {
-        'waveform': [(173,173,173), (147,149,196), (77,80,138), (108,66,0)],
-        'spectrogram': [(0, 0, 0), (58/4,68/4,65/4), (80/2,100/2,153/2), (90,180,100),
-                      (224,224,44), (255,60,30), (255,255,255)]
-    }
-}
-
-class TestAudioFile(object):
-    """A class that mimics audiolab.sndfile but generates noise instead of reading
-    a wave file. Additionally it can be told to have a "broken" header and thus crashing
-    in the middle of the file. Also useful for testing ultra-short files of 20 samples."""
-    def __init__(self, num_frames, has_broken_header=False):
-        self.seekpoint = 0
-        self.num_frames = num_frames
-        self.has_broken_header = has_broken_header
-
-    def seek(self, seekpoint):
-        self.seekpoint = seekpoint
-
-    def get_nframes(self):
-        return self.num_frames
-
-    def get_samplerate(self):
-        return 44100
-
-    def get_channels(self):
-        return 1
-
-    def read_frames(self, frames_to_read):
-        if self.has_broken_header and self.seekpoint + frames_to_read > self.num_frames / 2:
-            raise IOError()
-
-        num_frames_left = self.num_frames - self.seekpoint
-        if num_frames_left < frames_to_read:
-            will_read = num_frames_left
-        else:
-            will_read = frames_to_read
-        self.seekpoint += will_read
-        return numpy.random.random(will_read)*2 - 1 
-
-
-class AudioProcessor(object):
-    def __init__(self, audio_file, fft_size, window_function=numpy.ones):
-        self.fft_size = fft_size
-        self.window = window_function(self.fft_size)
-        self.audio_file = audio_file
-        self.frames = audio_file.get_nframes()
-        self.samplerate = audio_file.get_samplerate()
-        self.channels = audio_file.get_channels()
-        self.spectrum_range = None
-        self.lower = 100
-        self.higher = 22050
-        self.lower_log = math.log10(self.lower)
-        self.higher_log = math.log10(self.higher)
-        self.clip = lambda val, low, high: min(high, max(low, val))
-
-    def read(self, start, size, resize_if_less=False):
-        """ read size samples starting at start, if resize_if_less is True and less than size
-        samples are read, resize the array to size and fill with zeros """
-        
-        # number of zeros to add to start and end of the buffer
-        add_to_start = 0
-        add_to_end = 0
-        
-        if start < 0:
-            # the first FFT window starts centered around zero
-            if size + start <= 0:
-                if resize_if_less:
-                    return numpy.zeros(size)
-                else:
-                    return numpy.array([])
-            else:
-                self.audio_file.seek(0)
-
-                add_to_start = -start # remember: start is negative!
-                to_read = size + start
-
-                if to_read > self.frames:
-                    add_to_end = to_read - self.frames
-                    to_read = self.frames
-        else:
-            self.audio_file.seek(start)
-        
-            to_read = size
-            if start + to_read >= self.frames:
-                to_read = self.frames - start
-                add_to_end = size - to_read
-        
-        try:
-            samples = self.audio_file.read_frames(to_read)
-        except IOError:
-            # this can happen for wave files with broken headers...
-            if resize_if_less:
-                return numpy.zeros(size)
-            else:
-                return numpy.zeros(2)
-
-        # convert to mono by selecting left channel only
-        if self.channels > 1:
-            samples = samples[:,0]
-
-        if resize_if_less and (add_to_start > 0 or add_to_end > 0):
-            if add_to_start > 0:
-                samples = numpy.concatenate((numpy.zeros(add_to_start), samples), axis=1)
-            
-            if add_to_end > 0:
-                samples = numpy.resize(samples, size)
-                samples[size - add_to_end:] = 0
-        
-        return samples
-
-
-    def spectral_centroid(self, seek_point, spec_range=120.0):
-        """ starting at seek_point read fft_size samples, and calculate the spectral centroid """
-        
-        samples = self.read(seek_point - self.fft_size/2, self.fft_size, True)
-
-        samples *= self.window
-        fft = numpy.fft.fft(samples)
-        spectrum = numpy.abs(fft[:fft.shape[0] / 2 + 1]) / float(self.fft_size) # normalized abs(FFT) between 0 and 1
-        length = numpy.float64(spectrum.shape[0])
-        
-        # scale the db spectrum from [- spec_range db ... 0 db] > [0..1]
-        db_spectrum = ((20*(numpy.log10(spectrum + 1e-30))).clip(-spec_range, 0.0) + spec_range)/spec_range
-        
-        energy = spectrum.sum()
-        spectral_centroid = 0
-        
-        if energy > 1e-20:
-            # calculate the spectral centroid
-            
-            if self.spectrum_range == None:
-                self.spectrum_range = numpy.arange(length)
-        
-            spectral_centroid = (spectrum * self.spectrum_range).sum() / (energy * (length - 1)) * self.samplerate * 0.5
-            
-            # clip > log10 > scale between 0 and 1
-            spectral_centroid = (math.log10(self.clip(spectral_centroid, self.lower, self.higher)) - self.lower_log) / (self.higher_log - self.lower_log)
-        
-        return (spectral_centroid, db_spectrum)
-
-
-    def peaks(self, start_seek, end_seek):
-        """ read all samples between start_seek and end_seek, then find the minimum and maximum peak
-        in that range. Returns that pair in the order they were found. So if min was found first,
-        it returns (min, max) else the other way around. """
-        
-        # larger blocksizes are faster but take more mem...
-        # Aha, Watson, a clue, a tradeof!
-        block_size = 4096
-    
-        max_index = -1
-        max_value = -1
-        min_index = -1
-        min_value = 1
-    
-        if end_seek > self.frames:
-            end_seek = self.frames
-    
-        if block_size > end_seek - start_seek:
-            block_size = end_seek - start_seek
-            
-        if block_size <= 1:
-            samples = self.read(start_seek, 1)
-            return samples[0], samples[0]
-        elif block_size == 2:
-            samples = self.read(start_seek, True)
-            return samples[0], samples[1]
-        
-        for i in range(start_seek, end_seek, block_size):
-            samples = self.read(i, block_size)
-    
-            local_max_index = numpy.argmax(samples)
-            local_max_value = samples[local_max_index]
-    
-            if local_max_value > max_value:
-                max_value = local_max_value
-                max_index = local_max_index
-    
-            local_min_index = numpy.argmin(samples)
-            local_min_value = samples[local_min_index]
-            
-            if local_min_value < min_value:
-                min_value = local_min_value
-                min_index = local_min_index
-
-        if min_index < max_index:
-            return (min_value, max_value)
-        else:
-            return (max_value, min_value)
-
-
-def interpolate_colors(colors, flat=False, num_colors=256):
-    """ given a list of colors, create a larger list of colors interpolating
-    the first one. If flatten is True a list of numers will be returned. If
-    False, a list of (r,g,b) tuples. num_colors is the number of colors wanted
-    in the final list """
-    
-    palette = []
-    
-    for i in range(num_colors):
-        index = (i * (len(colors) - 1))/(num_colors - 1.0)
-        index_int = int(index)
-        alpha = index - float(index_int)
-        
-        if alpha > 0:
-            r = (1.0 - alpha) * colors[index_int][0] + alpha * colors[index_int + 1][0]
-            g = (1.0 - alpha) * colors[index_int][1] + alpha * colors[index_int + 1][1]
-            b = (1.0 - alpha) * colors[index_int][2] + alpha * colors[index_int + 1][2]
-        else:
-            r = (1.0 - alpha) * colors[index_int][0]
-            g = (1.0 - alpha) * colors[index_int][1]
-            b = (1.0 - alpha) * colors[index_int][2]
-        
-        if flat:
-            palette.extend((int(r), int(g), int(b)))
-        else:
-            palette.append((int(r), int(g), int(b)))
-        
-    return palette
-    
-
-class WaveformImage(object):
-    def __init__(self, image_width, image_height, bg_color = None, color_scheme = None):
-        if not bg_color:
-            bg_color = (0,0,0)
-        if not color_scheme: 
-            color_scheme = 'default'
-
-        self.image = Image.new("RGB", (image_width, image_height), bg_color)
-        
-        self.image_width = image_width
-        self.image_height = image_height
-        
-        self.draw = ImageDraw.Draw(self.image)
-        self.previous_x, self.previous_y = None, None
-        
-        colors = color_schemes[color_scheme]['waveform']
-        
-        # this line gets the old "screaming" colors back...
-        # colors = [self.color_from_value(value/29.0) for value in range(0,30)]
-        
-        self.color_lookup = interpolate_colors(colors)
-        self.pix = self.image.load()
-
-    def color_from_value(self, value):
-        """ given a value between 0 and 1, return an (r,g,b) tuple """
-
-        return ImageColor.getrgb("hsl(%d,%d%%,%d%%)" % (int( (1.0 - value) * 360 ), 80, 50))
-        
-    def draw_peaks(self, x, peaks, spectral_centroid):
-        """ draw 2 peaks at x using the spectral_centroid for color """
-
-        y1 = self.image_height * 0.5 - peaks[0] * (self.image_height - 4) * 0.5
-        y2 = self.image_height * 0.5 - peaks[1] * (self.image_height - 4) * 0.5
-        
-        line_color = self.color_lookup[int(spectral_centroid*255.0)]
-        
-        if self.previous_y != None:
-            self.draw.line([self.previous_x, self.previous_y, x, y1, x, y2], line_color)
-        else:
-            self.draw.line([x, y1, x, y2], line_color)
-    
-        self.previous_x, self.previous_y = x, y2
-        
-        self.draw_anti_aliased_pixels(x, y1, y2, line_color)
-    
-    def draw_anti_aliased_pixels(self, x, y1, y2, color):
-        """ vertical anti-aliasing at y1 and y2 """
-
-        y_max = max(y1, y2)
-        y_max_int = int(y_max)
-        alpha = y_max - y_max_int
-        
-        if alpha > 0.0 and alpha < 1.0 and y_max_int + 1 < self.image_height:
-            current_pix = self.pix[x, y_max_int + 1]
-            
-            r = int((1-alpha)*current_pix[0] + alpha*color[0])
-            g = int((1-alpha)*current_pix[1] + alpha*color[1])
-            b = int((1-alpha)*current_pix[2] + alpha*color[2])
-            
-            self.pix[x, y_max_int + 1] = (r,g,b)
-            
-        y_min = min(y1, y2)
-        y_min_int = int(y_min)
-        alpha = 1.0 - (y_min - y_min_int)
-        
-        if alpha > 0.0 and alpha < 1.0 and y_min_int - 1 >= 0:
-            current_pix = self.pix[x, y_min_int - 1]
-                
-            r = int((1-alpha)*current_pix[0] + alpha*color[0])
-            g = int((1-alpha)*current_pix[1] + alpha*color[1])
-            b = int((1-alpha)*current_pix[2] + alpha*color[2])
-            
-            self.pix[x, y_min_int - 1] = (r,g,b)
-            
-    def save(self, filename):
-        # draw a zero "zero" line
-        a = 25
-        for x in range(self.image_width):
-            self.pix[x, self.image_height/2] = tuple(map(lambda p: p+a, self.pix[x, self.image_height/2]))
-        
-        self.image.save(filename)
-        
-        
-class SpectrogramImage(object):
-    def __init__(self, image_width, image_height, fft_size, bg_color = None, color_scheme = None):
-
-        #FIXME: bg_color is ignored
-
-        if not color_scheme: 
-            color_scheme = 'default'
-
-        self.image = Image.new("P", (image_height, image_width))
-        
-        self.image_width = image_width
-        self.image_height = image_height
-        self.fft_size = fft_size
-        
-        colors = color_schemes[color_scheme]['spectrogram']
-        
-        self.image.putpalette(interpolate_colors(colors, True))
-
-        # generate the lookup which translates y-coordinate to fft-bin
-        self.y_to_bin = []
-        f_min = 100.0
-        f_max = 22050.0
-        y_min = math.log10(f_min)
-        y_max = math.log10(f_max)
-        for y in range(self.image_height):
-            freq = math.pow(10.0, y_min + y / (image_height - 1.0) *(y_max - y_min))
-            bin = freq / 22050.0 * (self.fft_size/2 + 1)
-
-            if bin < self.fft_size/2:
-                alpha = bin - int(bin)
-                
-                self.y_to_bin.append((int(bin), alpha * 255))
-           
-        # this is a bit strange, but using image.load()[x,y] = ... is
-        # a lot slower than using image.putadata and then rotating the image
-        # so we store all the pixels in an array and then create the image when saving
-        self.pixels = []
-            
-    def draw_spectrum(self, x, spectrum):
-        for (index, alpha) in self.y_to_bin:
-            self.pixels.append( int( ((255.0-alpha) * spectrum[index] + alpha * spectrum[index + 1] )) )
-            
-        for y in range(len(self.y_to_bin), self.image_height):
-            self.pixels.append(0)
-
-    def save(self, filename):
-        self.image.putdata(self.pixels)
-        self.image.transpose(Image.ROTATE_90).save(filename)
-
-
-def create_wavform_png(input_filename, output_filename_w, image_width, image_height, fft_size,
-                       bg_color = None, color_scheme = None):
-    audio_file = audiolab.sndfile(input_filename, 'read')
-
-    samples_per_pixel = audio_file.get_nframes() / float(image_width)
-    processor = AudioProcessor(audio_file, fft_size, numpy.hanning)
-    
-    waveform = WaveformImage(image_width, image_height, bg_color, color_scheme)
-    
-    for x in range(image_width):
-        
-        if x % (image_width/10) == 0:
-            sys.stdout.write('.')
-            sys.stdout.flush()
-            
-        seek_point = int(x * samples_per_pixel)
-        next_seek_point = int((x + 1) * samples_per_pixel)
-        
-        (spectral_centroid, db_spectrum) = processor.spectral_centroid(seek_point)
-        peaks = processor.peaks(seek_point, next_seek_point)
-        
-        waveform.draw_peaks(x, peaks, spectral_centroid)
-    
-    waveform.save(output_filename_w)
-    
-    print " done"
-
-def create_spectrogram_png(input_filename, output_filename_s, image_width, image_height, fft_size,
-                           bg_color = None, color_scheme = None):
-    audio_file = audiolab.sndfile(input_filename, 'read')
-
-    samples_per_pixel = audio_file.get_nframes() / float(image_width)
-    processor = AudioProcessor(audio_file, fft_size, numpy.hanning)
-    
-    spectrogram = SpectrogramImage(image_width, image_height, fft_size, bg_color, color_scheme)
-    
-    for x in range(image_width):
-   
-        if x % (image_width/10) == 0:
-            sys.stdout.write('.')
-            sys.stdout.flush()
-            
-        seek_point = int(x * samples_per_pixel)
-        next_seek_point = int((x + 1) * samples_per_pixel)  
-        (spectral_centroid, db_spectrum) = processor.spectral_centroid(seek_point) 
-        spectrogram.draw_spectrum(x, db_spectrum)
-    
-    spectrogram.save(output_filename_s)
-    
-    print " done"
-
index 513ec97d0c6d60023f343c479658465fa2a7fd09..8b9c1ff6b7ffc54a168d82cda0984dfd444234bb 100644 (file)
@@ -22,7 +22,7 @@
 from timeside.core import *
 from timeside.api import IGrapher
 from tempfile import NamedTemporaryFile
-from timeside.graph.wav2png import *
+from timeside.graph.core import *
 
 class WaveFormGrapherAudiolab(Processor):
     """WaveForm graph driver (python style thanks to wav2png.py and scikits.audiolab)"""
index 7578443faec2235de4dd97cccbb473c92061a8e9..db84a9c0e0bf2945c788adc1a19a7d841a1f57b2 100644 (file)
@@ -19,7 +19,7 @@ class FileDecoder(Processor):
         self.filename = filename
         # The file has to be opened here so that nframes(), samplerate(), 
         # etc.. work before setup() is called. 
-        self.file     = audiolab.sndfile(self.filename, 'read')
+        self.file     = audiolab.Sndfile(self.filename, 'r')
         self.position = 0
 
     @interfacedoc
@@ -36,31 +36,31 @@ class FileDecoder(Processor):
 
     @interfacedoc
     def channels(self):
-        return self.file.get_channels()
+        return self.file.channels
         
     @interfacedoc    
     def samplerate(self):        
-        return self.file.get_samplerate()
+        return self.file.samplerate
 
     @interfacedoc
     def duration(self):
-        return self.file.get_nframes() / self.file.get_samplerate()
+        return self.file.nframes / self.file.samplerate
 
     @interfacedoc
     def nframes(self):
-        return self.file.get_nframes()
+        return self.file.nframes
 
     @interfacedoc
     def format(self):
-        return self.file.get_file_format()
+        return self.file.file_format
    
     @interfacedoc
     def encoding(self):
-        return self.file.get_encoding()
+        return self.file.encoding
     @interfacedoc
     def resolution(self):
         resolution = None
-        encoding = self.file.get_encoding()
+        encoding = self.file.encoding
 
         if encoding == "pcm8":
             resolution = 8
@@ -209,7 +209,8 @@ class Waveform(Processor):
     implements(IGrapher)
 
     @interfacedoc
-    def __init__(self, width, height, output=None):
+    def __init__(self, width, height, nframes, output=None):
+        self.nframes = nframes
         self.filename = output
         self.image = None
         if width:
@@ -247,8 +248,16 @@ class Waveform(Processor):
         Processor.setup(self, channels, samplerate)
         if self.image:
             self.image.close()
-        self.image = WaveformImage(self.width, self.height, self.bg_color, self.color_scheme, self.filename)
-    
+        self.image = WaveformImage(self.width, self.height, self.nframes)
+
+   @interfacedoc
+    def process(self, frames, eod=False):
+        self.image.process(frames)
+        if eod:
+            self.image.close()
+            self.image = None
+        return frames, eod
+        
     @interfacedoc
     def render(self):
         self.image.process()