# from FeaturePlan
self.analyzer = Yaafe(fp)
+ # Expected Results
+ self.result_length = 3
+
def testOnGuitarWithFeaturePlanFromFile(self):
"runs on guitar and load Yaafe feature plan from file"
self.source = os.path.join (os.path.dirname(__file__), "samples", "guitar.wav")
# from FeaturePlan
self.analyzer = Yaafe(fp)
+ # Expected Results
+ self.result_length = 3
+
def testOnGuitarWithDataFlow(self):
"runs on guitar and load Yaafe dataflow from file"
self.source = os.path.join (os.path.dirname(__file__), "samples", "guitar.wav")
# from DataFlow
self.analyzer = Yaafe(df)
+ # Expected Results
+ self.result_length = 5
+
def tearDown(self):
decoder = FileDecoder(self.source)
decoder.output_samplerate = self.sample_rate
(decoder | self.analyzer).run()
results = self.analyzer.results()
+ self.assertEquals(self.result_length, len(results))
#print results
#print results.to_yaml()
#print results.to_json()
container = AnalyzerResultContainer()
# Get feature extraction results from yaafe
featNames = self.yaafe_engine.getOutputs().keys()
+ if len(featNames) == 0:
+ raise KeyError('Yaafe engine did not return any feature')
for featName in featNames:
# Define ID fields
id = 'yaafe_' + featName
# Get results from Yaafe engine
result = AnalyzerResult()
- result.metadata = AnalyzerMetadata(id = id,
- name = name,
- unit = unit,
- samplerate = self.samplerate,
- blocksize = self.blocksize,
- stepsize = None)
-
- result.data = self.yaafe_engine.readOutput(featName) # Read Yaafe Results
+ result.metadata = AnalyzerMetadata(id=id,
+ name=name,
+ unit=unit,
+ samplerate=self.samplerate,
+ blocksize=self.blocksize,
+ stepsize=None)
+ # Read Yaafe Results
+ result.data = self.yaafe_engine.readOutput(featName)
# Store results in Container
if len(result.data):
container.add_result(result)