args.length);
var x = args;
- var y = new Float64Array(n * m);
+ // Building the cube vertices: its part and sample index
+ // http://rjwagner49.com/Mathematics/Interpolation.pdf
+ var cubeVertices = 1 << m;
+ var cubeN = new Float64Array(cubeVertices);
+ var cubeVertex = new Uint32Array(cubeVertices);
+ for (var j = 0; j < cubeVertices; j++)
+ cubeN[j] = 1;
+
+ var k = n, pos = 1;
// Map x_i to y_j for 0 <= i < m using the sampled function.
for (var i = 0; i < m; ++i) {
// x_i' = min(max(x_i, Domain_2i), Domain_2i+1)
- var domain_2i = domain[2 * i];
- var domain_2i_1 = domain[2 * i + 1];
+ var domain_2i = domain[i][0];
+ var domain_2i_1 = domain[i][1];
var xi = Math.min(Math.max(x[i], domain_2i), domain_2i_1);
- // e_i = Interpolate(x_i', Domain_2i, Domain_2i+1, Encode_2i, Encode_2i+1)
- var e = interpolate(xi, domain_2i, domain_2i_1, encode[2 * i], encode[2 * i + 1]);
+ // e_i = Interpolate(x_i', Domain_2i, Domain_2i+1,
+ // Encode_2i, Encode_2i+1)
+ var e = interpolate(xi, domain_2i, domain_2i_1,
+ encode[i][0], encode[i][1]);
// e_i' = min(max(e_i, 0), Size_i - 1)
- e = Math.min(Math.max(e, 0), size[i] - 1);
+ var size_i = size[i];
+ e = Math.min(Math.max(e, 0), size_i - 1);
+
+ // Adjusting the cube: N and vertex sample index
+ var e0 = e < size_i - 1 ? Math.floor(e) : e - 1; // e1 = e0 + 1;
+ var n0 = e0 + 1 - e; // (e1 - e) / (e1 - e0);
+ var n1 = e - e0; // (e - e0) / (e1 - e0);
+ var offset0 = e0 * k;
+ var offset1 = offset0 + k; // e1 * k
+ for (var j = 0; j < cubeVertices; j++) {
+ if (j & pos) {
+ cubeN[j] *= n1;
+ cubeVertex[j] += offset1;
+ } else {
+ cubeN[j] *= n0;
+ cubeVertex[j] += offset0;
+ }
+ }
- var in = i * n;
+ k *= size_i;
+ pos <<= 1;
+ }
- for (var j = 0; j < n; ++j) {
- // average the two nearest neighbors in the sampling table
- var rj = (samples[Math.floor(e) * n + j] + samples[Math.ceil(e) * n + j]) / 2;
+ var y = new Float64Array(n);
+ for (var j = 0; j < n; ++j) {
+ // Sum all cube vertices' samples portions
+ var rj = 0;
+ for (var i = 0; i < cubeVertices; i++)
+ rj += samples[cubeVertex[i] + j] * cubeN[i];
- // r_j' = Interpolate(r_j, 0, 2^BitsPerSample - 1, Decode_2j, Decode_2j+1)
- rj = interpolate(rj, 0, mask, 1, decode[2 * j], decode[2 * j + 1]);
+ // r_j' = Interpolate(r_j, 0, 2^BitsPerSample - 1,
+ // Decode_2j, Decode_2j+1)
+ rj = interpolate(rj, 0, 1, decode[j][0], decode[j][1]);
- // y_j = min(max(r_j, range_2j, range_2j+1)
- y[in + j] = Math.min(Math.max(rj, range[2 * j], range[2 * j + 1]));
- }
+ // y_j = min(max(r_j, range_2j), range_2j+1)
+ y[j] = Math.min(Math.max(rj, range[j][0]), range[j][1]);
}
return y;