var JpegImage = (function jpegImage() {
"use strict";
-
- function constructor(colorTransform) {
- this.colorTransform = typeof colorTransform !== 'undefined' ? colorTransform : -1;
+ var dctZigZag = new Int32Array([
+ 0,
+ 1, 8,
+ 16, 9, 2,
+ 3, 10, 17, 24,
+ 32, 25, 18, 11, 4,
+ 5, 12, 19, 26, 33, 40,
+ 48, 41, 34, 27, 20, 13, 6,
+ 7, 14, 21, 28, 35, 42, 49, 56,
+ 57, 50, 43, 36, 29, 22, 15,
+ 23, 30, 37, 44, 51, 58,
+ 59, 52, 45, 38, 31,
+ 39, 46, 53, 60,
+ 61, 54, 47,
+ 55, 62,
+ 63
+ ]);
+
+ var dctCos1 = 4017 // cos(pi/16)
+ var dctSin1 = 799 // sin(pi/16)
+ var dctCos3 = 3406 // cos(3*pi/16)
+ var dctSin3 = 2276 // sin(3*pi/16)
+ var dctCos6 = 1567 // cos(6*pi/16)
+ var dctSin6 = 3784 // sin(6*pi/16)
+ var dctSqrt2 = 5793 // sqrt(2)
+ var dctSqrt1d2 = 2896 // sqrt(2) / 2
+
+ function constructor() {
}
- var iDCTTables = (function initDCTTables() {
- var cosTables = [], i, j;
- for (i = 0; i < 8; i++) {
- cosTables.push(new Float32Array(8));
- for (j = 0; j < 8; j++)
- cosTables[i][j] = Math.cos((2 * i + 1) * j * Math.PI / 16) *
- (j > 0 ? 1 : 1/Math.sqrt(2));
- }
-
- var zzTransform = new Int32Array([
- 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12,
- 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32,
- 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47,
- 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63]);
-
- var x, y, u, v;
- var tables = [];
- for (y = 0; y < 8; y++) {
- var cosTable_y = cosTables[y];
- for (x = 0; x < 8; x++) {
- var cosTable_x = cosTables[x];
- var table = new Float32Array(64);
- i = 0;
- for (v = 0; v < 8; v++) {
- for (u = 0; u < 8; u++)
- table[zzTransform[i++]] = cosTable_x[u] * cosTable_y[v];
- }
- tables.push(table);
- }
- }
- return tables;
- })();
-
function buildHuffmanTable(codeLengths, values) {
var k = 0, code = [], i, j, length = 16;
while (length > 0 && !codeLengths[length - 1])
continue;
}
k += r;
- zz[k] = receiveAndExtend(s);
+ var z = dctZigZag[k];
+ zz[z] = receiveAndExtend(s);
k++;
}
}
continue;
}
k += r;
- zz[k] = receiveAndExtend(s) * (1 << successive);
+ var z = dctZigZag[k];
+ zz[z] = receiveAndExtend(s) * (1 << successive);
k++;
}
}
function decodeACSuccessive(component, zz) {
var k = spectralStart, e = spectralEnd, r = 0;
while (k <= e) {
+ var z = dctZigZag[k];
switch (successiveACState) {
case 0: // initial state
var rs = decodeHuffman(component.huffmanTableAC);
continue;
case 1: // skipping r zero items
case 2:
- if (zz[k])
- zz[k] += (readBit() << successive);
+ if (zz[z])
+ zz[z] += (readBit() << successive);
else {
r--;
if (r === 0)
}
break;
case 3: // set value for a zero item
- if (zz[k])
- zz[k] += (readBit() << successive);
+ if (zz[z])
+ zz[z] += (readBit() << successive);
else {
- zz[k] = successiveACNextValue << successive;
+ zz[z] = successiveACNextValue << successive;
successiveACState = 0;
}
break;
case 4: // eob
- if (zz[k])
- zz[k] += (readBit() << successive);
+ if (zz[z])
+ zz[z] += (readBit() << successive);
break;
}
k++;
var blocksPerLine = component.blocksPerLine;
var blocksPerColumn = component.blocksPerColumn;
var samplesPerLine = blocksPerLine << 3;
-
- function quantizeAndInverse(zz) {
+ var R = new Int32Array(64), r = new Uint8Array(64);
+
+ // A port of poppler's IDCT method which in turn is taken from:
+ // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
+ // "Practical Fast 1-D DCT Algorithms with 11 Multiplications",
+ // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989,
+ // 988-991.
+ function quantizeAndInverse(zz, dataOut, dataIn) {
var qt = component.quantizationTable;
- var precisionShift = frame.precision - 8;
+ var v0, v1, v2, v3, v4, v5, v6, v7, t;
+ var p = dataIn;
+ var i;
- var R = new Int32Array(64);
+ // dequant
for (i = 0; i < 64; i++)
- R[i] = zz[i] * qt[i];
-
- var r = new Uint8Array(64), i, j;
- for (i = 0; i < 64; i++) {
- var sum = 0;
- var table = iDCTTables[i];
- for (j = 0; j < 64; j++)
- sum += table[j] * R[j];
- // TODO loosing precision?
- var sample = 128 + ((sum / 4) >> precisionShift);
- // clamping
- r[i] = sample < 0 ? 0 : sample > 0xFF ? 0xFF : sample;
+ p[i] = zz[i] * qt[i];
+
+ // inverse DCT on rows
+ for (i = 0; i < 8; ++i) {
+ var row = 8 * i;
+
+ // check for all-zero AC coefficients
+ if (p[1 + row] == 0 && p[2 + row] == 0 && p[3 + row] == 0 &&
+ p[4 + row] == 0 && p[5 + row] == 0 && p[6 + row] == 0 &&
+ p[7 + row] == 0) {
+ t = (dctSqrt2 * p[0 + row] + 512) >> 10;
+ p[0 + row] = t;
+ p[1 + row] = t;
+ p[2 + row] = t;
+ p[3 + row] = t;
+ p[4 + row] = t;
+ p[5 + row] = t;
+ p[6 + row] = t;
+ p[7 + row] = t;
+ continue;
+ }
+
+ // stage 4
+ v0 = (dctSqrt2 * p[0 + row] + 128) >> 8;
+ v1 = (dctSqrt2 * p[4 + row] + 128) >> 8;
+ v2 = p[2 + row];
+ v3 = p[6 + row];
+ v4 = (dctSqrt1d2 * (p[1 + row] - p[7 + row]) + 128) >> 8;
+ v7 = (dctSqrt1d2 * (p[1 + row] + p[7 + row]) + 128) >> 8;
+ v5 = p[3 + row] << 4;
+ v6 = p[5 + row] << 4;
+
+ // stage 3
+ t = (v0 - v1+ 1) >> 1;
+ v0 = (v0 + v1 + 1) >> 1;
+ v1 = t;
+ t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8;
+ v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8;
+ v3 = t;
+ t = (v4 - v6 + 1) >> 1;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = t;
+ t = (v7 + v5 + 1) >> 1;
+ v5 = (v7 - v5 + 1) >> 1;
+ v7 = t;
+
+ // stage 2
+ t = (v0 - v3 + 1) >> 1;
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = t;
+ t = (v1 - v2 + 1) >> 1;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = t;
+ t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
+ v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
+ v7 = t;
+ t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
+ v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ p[0 + row] = v0 + v7;
+ p[7 + row] = v0 - v7;
+ p[1 + row] = v1 + v6;
+ p[6 + row] = v1 - v6;
+ p[2 + row] = v2 + v5;
+ p[5 + row] = v2 - v5;
+ p[3 + row] = v3 + v4;
+ p[4 + row] = v3 - v4;
+ }
+
+ // inverse DCT on columns
+ for (i = 0; i < 8; ++i) {
+ var col = i;
+
+ // check for all-zero AC coefficients
+ if (p[1*8 + col] == 0 && p[2*8 + col] == 0 && p[3*8 + col] == 0 &&
+ p[4*8 + col] == 0 && p[5*8 + col] == 0 && p[6*8 + col] == 0 &&
+ p[7*8 + col] == 0) {
+ t = (dctSqrt2 * dataIn[i+0] + 8192) >> 14;
+ p[0*8 + col] = t;
+ p[1*8 + col] = t;
+ p[2*8 + col] = t;
+ p[3*8 + col] = t;
+ p[4*8 + col] = t;
+ p[5*8 + col] = t;
+ p[6*8 + col] = t;
+ p[7*8 + col] = t;
+ continue;
+ }
+
+ // stage 4
+ v0 = (dctSqrt2 * p[0*8 + col] + 2048) >> 12;
+ v1 = (dctSqrt2 * p[4*8 + col] + 2048) >> 12;
+ v2 = p[2*8 + col];
+ v3 = p[6*8 + col];
+ v4 = (dctSqrt1d2 * (p[1*8 + col] - p[7*8 + col]) + 2048) >> 12;
+ v7 = (dctSqrt1d2 * (p[1*8 + col] + p[7*8 + col]) + 2048) >> 12;
+ v5 = p[3*8 + col];
+ v6 = p[5*8 + col];
+
+ // stage 3
+ t = (v0 - v1 + 1) >> 1;
+ v0 = (v0 + v1 + 1) >> 1;
+ v1 = t;
+ t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12;
+ v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12;
+ v3 = t;
+ t = (v4 - v6 + 1) >> 1;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = t;
+ t = (v7 + v5 + 1) >> 1;
+ v5 = (v7 - v5 + 1) >> 1;
+ v7 = t;
+
+ // stage 2
+ t = (v0 - v3 + 1) >> 1;
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = t;
+ t = (v1 - v2 + 1) >> 1;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = t;
+ t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
+ v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
+ v7 = t;
+ t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
+ v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ p[0*8 + col] = v0 + v7;
+ p[7*8 + col] = v0 - v7;
+ p[1*8 + col] = v1 + v6;
+ p[6*8 + col] = v1 - v6;
+ p[2*8 + col] = v2 + v5;
+ p[5*8 + col] = v2 - v5;
+ p[3*8 + col] = v3 + v4;
+ p[4*8 + col] = v3 - v4;
+ }
+
+ // convert to 8-bit integers
+ for (i = 0; i < 64; ++i) {
+ var sample = 128 + ((p[i] + 8) >> 4);
+ dataOut[i] = sample < 0 ? 0 : sample > 0xFF ? 0xFF : sample;
}
- return r;
}
var i, j;
for (i = 0; i < 8; i++)
lines.push(new Uint8Array(samplesPerLine));
for (var blockCol = 0; blockCol < blocksPerLine; blockCol++) {
- var r = quantizeAndInverse(component.blocks[blockRow][blockCol]);
+ quantizeAndInverse(component.blocks[blockRow][blockCol], r, R);
var offset = 0, sample = blockCol << 3;
for (j = 0; j < 8; j++) {
var quantizationTableSpec = data[offset++];
var tableData = new Int32Array(64);
if ((quantizationTableSpec >> 4) === 0) { // 8 bit values
- for (j = 0; j < 64; j++)
- tableData[j] = data[offset++];
+ for (j = 0; j < 64; j++) {
+ var z = dctZigZag[j];
+ tableData[z] = data[offset++];
+ }
} else if ((quantizationTableSpec >> 4) === 1) { //16 bit
tableData[j] = readUint16();
} else
// The adobe transform marker overrides any previous setting
if (this.adobe && this.adobe.transformCode)
colorTransform = true;
- else if (typeof this.colorTransform != -1)
- colorTransform = this.colorTransform == true;
+ else if (typeof this.colorTransform !== 'undefined')
+ colorTransform = !!this.colorTransform;
component1 = this.components[0];
component2 = this.components[1];
// The adobe transform marker overrides any previous setting
if (this.adobe && this.adobe.transformCode)
colorTransform = true;
- else if (typeof this.colorTransform != -1)
- colorTransform = this.colorTransform == true;
+ else if (typeof this.colorTransform !== 'undefined')
+ colorTransform = !!this.colorTransform;
component1 = this.components[0];
component2 = this.components[1];
return data;
},
copyToImageData: function copyToImageData(imageData) {
- this.getData(imageData.data, imageData.width, imageData.height);
+ var width = imageData.width, height = imageData.height;
+ var imageDataArray = imageData.data;
+ var data = this.getData(width, height);
+ var i = 0, j = 0, x, y;
+ var Y, K, C, M, R, G, B;
+ switch (this.components.length) {
+ case 1:
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ Y = data[i++];
+
+ imageDataArray[j++] = Y;
+ imageDataArray[j++] = Y;
+ imageDataArray[j++] = Y;
+ imageDataArray[j++] = 255;
+ }
+ }
+ break;
+ case 3:
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ R = data[i++];
+ G = data[i++];
+ B = data[i++];
+
+ imageDataArray[j++] = R;
+ imageDataArray[j++] = G;
+ imageDataArray[j++] = B;
+ imageDataArray[j++] = 255;
+ }
+ }
+ break;
+ case 4:
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ C = data[i++];
+ M = data[i++];
+ Y = data[i++];
+ K = data[i++];
+
+ R = 255 - clampTo8bit(C * (1 - K / 255) + K);
+ G = 255 - clampTo8bit(M * (1 - K / 255) + K);
+ B = 255 - clampTo8bit(Y * (1 - K / 255) + K);
+
+ imageDataArray[j++] = R;
+ imageDataArray[j++] = G;
+ imageDataArray[j++] = B;
+ imageDataArray[j++] = 255;
+ }
+ }
+ break;
+ default:
+ throw 'Unsupported color mode';
+ }
}
};