from numpy import logical_and,array, hamming, dot, mean, float, arange, nonzero
from numpy.fft import rfft
from scipy.signal import firwin, lfilter
-from pylab import plot,show
+from timeside.analyzer.preprocessors import frames_adapter
+
class IRITMusicSLN(Analyzer):
implements(IAnalyzer)
def __str__(self):
return "Music confidence indexes"
-
+
+ @frames_adapter
def process(self, frames, eod=False):
-
return frames,eod
-
def post_process(self):
'''
from numpy import logical_and,array, hamming, dot, mean, float, arange, nonzero
from numpy.fft import rfft
from scipy.signal import firwin, lfilter
-from pylab import plot,show
+from timeside.analyzer.preprocessors import frames_adapter
+
class IRITMusicSNB(Analyzer):
+
implements(IAnalyzer)
- def __init__(self, blocksize=1024, stepsize=None) :
+ def __init__(self, blocksize=1024, stepsize=None, samplerate=None) :
super(IRITMusicSNB, self).__init__();
self.parents.append(IRITDiverg())
self.wLen = 1.0
def __str__(self):
return "Music confidence indexes"
-
+
+ @frames_adapter
def process(self, frames, eod=False):
-
return frames,eod
-
def post_process(self):
'''
- modulLen (float) : Length (in second) of the modulation computation window
'''
- @interfacedoc
- implements(IAnalyzer)
-
+ @interfacedoc
def setup(self, channels=None, samplerate=None, blocksize=None,
totalframes=None):
super(IRITSpeech4Hz, self).setup(
def __str__(self):
return "Speech confidences indexes"
- @frames_adapter
def process(self, frames, eod=False):
+ '''
+
+ '''
+
frames = frames.T[0]
# windowing of the frame (could be a changeable property)
w = frames * hamming(len(frames))
segs.label_metadata.label = label
segs.data_object.label = [convert[s[2]] for s in segList]
- segs.data_object.time = [(float(s[0]) * self.input_blocksize /
+ segs.data_object.time = [(float(s[0]) * self.blocksize() /
self.samplerate())
for s in segList]
- segs.data_object.duration = [(float(s[1]-s[0]) * self.input_blocksize /
- segs.data_object.duration = [(float(s[1]-s[0]+1) * self.blocksize() /
++ segs.data_object.duration = [(float(s[1]-s[0]) * self.blocksize() /
self.samplerate())
for s in segList]
return frames, eod
def post_process(self):
-
entropyValue = array(self.entropyValue)
- w = self.modulLen * self.samplerate() / self.blocksize()
+ w = self.modulLen * self.samplerate() / self.input_blocksize
modulentropy = computeModulation(entropyValue, w, False)
confEntropy = array(modulentropy - self.threshold) / self.threshold
confEntropy[confEntropy > 1] = 1
segs.label_metadata.label = label
segs.data_object.label = [convert[s[2]] for s in segList]
- segs.data_object.time = [(float(s[0]) * self.blocksize() /
+ segs.data_object.time = [(float(s[0]) * self.input_blocksize /
self.samplerate())
for s in segList]
++<<<<<<< HEAD
+ segs.data_object.duration = [(float(s[1]-s[0]) * self.input_blocksize /
++=======
+ segs.data_object.duration = [(float(s[1]-s[0]+1) * self.blocksize() /
++>>>>>>> 7c3ccb1c5b87c4639fee32df595cca1991265657
self.samplerate())
for s in segList]